Essential Statistical Inference - pr_31253

Essential Statistical Inference

Theory and Methods

By Dennis D. Boos, L A Stefanski

Hardback

$237.50

Or 4 payments of $59.38 with

delivery message Free delivery for orders over $49.99

Add to Wish List
Delivered in 10 - 14 days
Available for Click and Collect
This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems. An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology. Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods.

Product code: 9781461448174

ISBN 9781461448174
Dimensions H235xW155
Series Springer Texts in Statistics
No. of pages 568
Publisher Springer-Verlag New York Inc.
Edition 2013 ed.
This book is for students and researchers who have had a first year graduate level mathematical statistics course. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models.